

Projektmanagement (Softwarepraktikum)

Thema: Workflows

Typisches Szenario in der Praxis

Benötigt: Auswertung biologischer Massendaten z.B.

- NGS
- Massenspektrometrie
- Mikroskopie

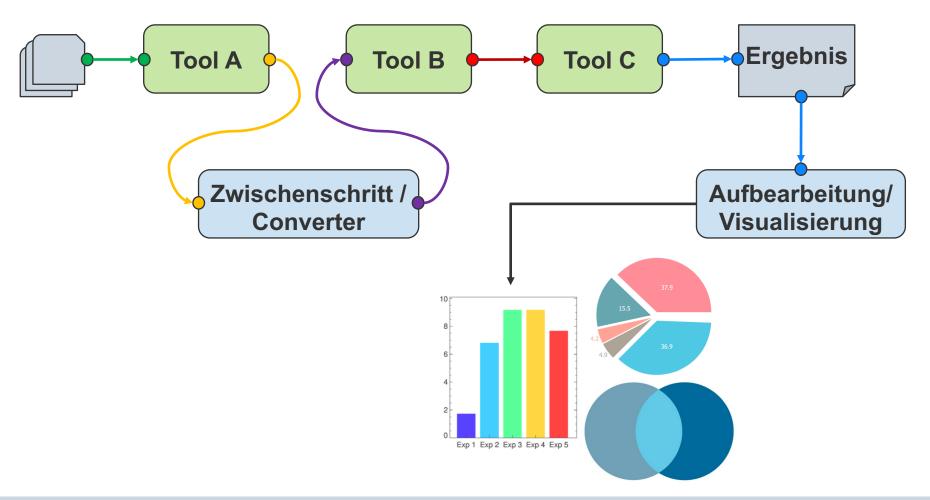
(Leider) selten!

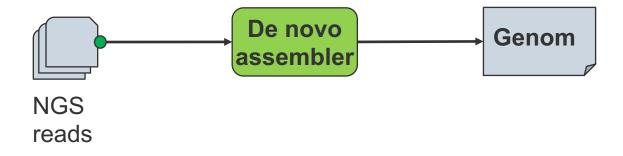
Es existiert ein Tool für die gesamte Analyse!

(Zum Glück) selten!

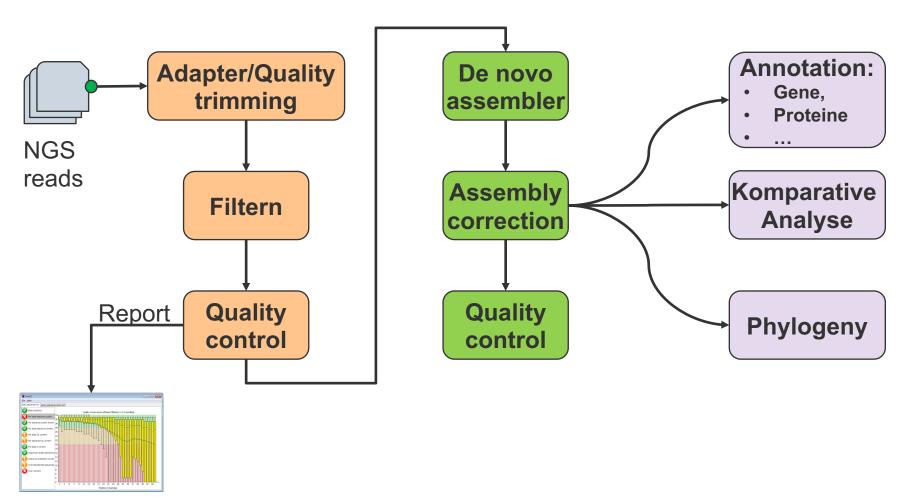
Es existiert noch gar keine Software! Ich muss alles selbst entwickeln!

Häufig!


Es existieren Tools für einzelne Schritte der Analyse!


Einzelne Tools → **Analyse Pipeline**

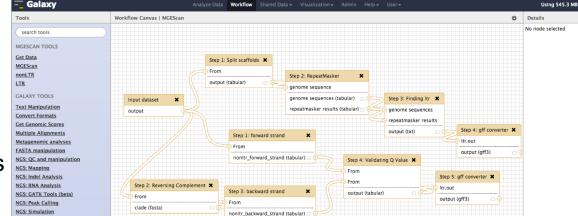
Beispiel: Genom Assemblierung

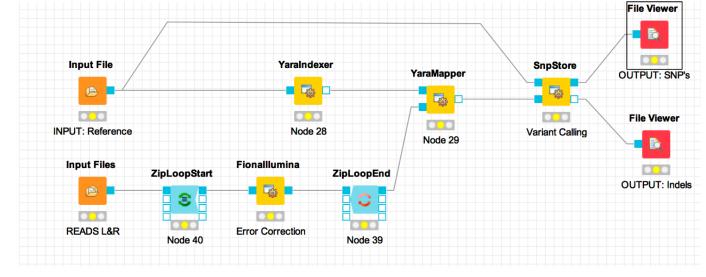


Beispiel: Genom Assemblierung

From: FastQC

Realisierung


- 1. Von Hand Tools nacheinander ausführen
- 2. Eigenes "framework"
 - Batch script
 - Python script
 - ...



Realisierung

- 1. Von Hand Tools nacheinander ausführen
- 2. Eigenes "framework"
 - Batch script
 - Python script
 - ...
- 3. Generische workflow engines
 - GUI basiert:
 - Galaxy
 - KNIME

Realisierung

- Von Hand Tools nacheinander ausführen
- 2. Eigenes "framework"
 - Batch script
 - Python script
 - ...
- 3. Generische workflow engines
 - GUI basiert:
 - Galaxy
 - KNIME
 - Script basiert:
 - Nextflow
 - Snakemake

```
* split a fasta file in multiple files
                         process splitSequences {
                            input:
                            file 'input.fa' from sequences
                            output:
rule targets:
                                                  nt > f}' < input.fa</pre>
     input:
          "plots/dataset1.pdf",
          "plots/dataset2.pdf"
rule plot:
     input:
          "raw/{dataset}.csv"
     output:
          "plots/{dataset}.pdf"
     shell:
          "somecommand {input} {output}"
```

#!/usr/bin/env nextflow

sequences = file(params.in)

params.in = "\$baseDir/data/sample.fa"

Analyse "echter Daten" aus "echten Projekten" am BSC

- Konzeption einer umfassenden Analyse-Pipeline
 - Recherche:
 - Welche Tools gibt es, was ist derzeit best practice?
 - Wie müssen sie miteinander verbunden werden?
 - Benötigen wir spezielle Zwischenschritte → eigene Programme / Skripte?
- Implementierung der Pipeline und ggf. eigener Programme / Skripte
 - Pipeline in Snakemake
 - Eigene Programme nach Wahl (Python, C++,...)
- Testen anhand der Daten + Auswertung und Diskussion der Ergebnisse mit den Wissenschaftlern ("Kunden")
 - Verfeinerung / Erweiterung anhand von Feedback.

Analyse "echter Daten" aus "echten Projekten" am BSC

Beispiel Projekt A:

Wurm-Biom Analyse von Pferden:

- Wurminfektionen sehr häufig bei Pferden
- Ein Wirt kann gleichzeitig von vielen Spezies betroffen sein.

Aufgabe:

 Anhand von NGS-Daten von Wurm-DNA aus Pferden verschiedener Herkunft und verschiedener Behandlung die Spezies-Zusammensetzung bestimmen und quantifizieren.

SWP Workflows, 31.01.2020

Analyse "echter Daten" aus "echten Projekten" am BSC

Beispiel Projekt B:

Bestimmung von Resistenzgenen mittels RNA-Seq:

Wieder Pferdewürmer, diesmal multi-resistente Exemplare

Aufgabe:

 Anhand von RNA-Seq Daten für Würmer mit verschiedenen Treatments sollen Gene identifiziert werden, welche als Reaktion auf den Wirkstoff hochreguliert sind → Kandidaten für Resistenzgene.

Analyse "echter Daten" aus "echten Projekten" am BSC

Diverse weitere Projekte sind möglich und werden in der

Seminarwoche vorgestellt

SWP - Orga

Zeitplan (vorläufig, kann angepasst werden)	
Vorbesprechung	Ende Februar
Seminar (Snakemake, Git, NGS-Tools,)	9.3 13.3.
Vorstellung der Projektpläne	25.3
Eigenständige Bearbeitung und wöchentliche Besprechung	Freitags (10-12) und nach Bedarf
Bearbeitung und Abschlussbericht	bis 8.5.

Quantitative Aufteilung: (in %)

Praktische Programmierarbeit: 50%

Soft Skills: 50%

Verwendete Programmiersprache(n):

R, Python oder andere Skriptsprache

Schwierigkeitsgrad

A Programmieren ****

B Biologie/Chemie ★

C Projektmanagement ***

Erforderliche Vorkenntnisse:

R, Python

SWP Workflows, 31.01.2020 13